drawing a balanced binary tree

Balanced Binary Tree

In this tutorial, you will learn about a balanced binary tree and its different types. Also, you will find working examples of a balanced binary tree in C, C++, Java and Python.

A balanced binary tree, also referred to as a height-balanced binary tree, is defined as a binary tree in which the height of the left and right subtree of any node differ by not more than 1.

To learn more about the height of a tree/node, visit Tree Data Structure.Following are the conditions for a height-balanced binary tree:

  1. difference between the left and the right subtree for any node is not more than one
  2. the left subtree is balanced
  3. the right subtree is balanced
Balanced Binary Tree Example
Balanced Binary Tree with depth at each level
Unbalanced Binary Tree Example
Unbalanced Binary Tree with depth at each level

Python, Java and C/C++ Examples

The following code is for checking whether a tree is height-balanced.

                # Checking if a binary tree is height balanced in Python   class Node:      def __init__(self, data):         self.data = data         self.left = self.right = None   class Height:     def __init__(self):         self.height = 0   def isHeightBalanced(root, height):      left_height = Height()     right_height = Height()      if root is None:         return True      l = isHeightBalanced(root.left, left_height)     r = isHeightBalanced(root.right, right_height)      height.height = max(left_height.height, right_height.height) + 1      if abs(left_height.height - right_height.height) <= 1:         return l and r      return False   height = Height()  root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5)  if isHeightBalanced(root, height):     print('The tree is balanced') else:     print('The tree is not balanced')                              
                // Checking if a binary tree is height balanced in Java  // Node creation class Node {    int data;   Node left, right;    Node(int d) {     data = d;     left = right = null;   } }  // Calculate height class Height {   int height = 0; }  class BinaryTree {    Node root;    // Check height balance   boolean checkHeightBalance(Node root, Height height) {      // Check for emptiness     if (root == null) {       height.height = 0;       return true;     }      Height leftHeighteight = new Height(), rightHeighteight = new Height();     boolean l = checkHeightBalance(root.left, leftHeighteight);     boolean r = checkHeightBalance(root.right, rightHeighteight);     int leftHeight = leftHeighteight.height, rightHeight = rightHeighteight.height;      height.height = (leftHeight > rightHeight ? leftHeight : rightHeight) + 1;      if ((leftHeight - rightHeight >= 2) || (rightHeight - leftHeight >= 2))       return false;      else       return l && r;   }    public static void main(String args[]) {     Height height = new Height();      BinaryTree tree = new BinaryTree();     tree.root = new Node(1);     tree.root.left = new Node(2);     tree.root.right = new Node(3);     tree.root.left.left = new Node(4);     tree.root.left.right = new Node(5);      if (tree.checkHeightBalance(tree.root, height))       System.out.println("The tree is balanced");     else       System.out.println("The tree is not balanced");   } }              
                // Checking if a binary tree is height balanced in C  #include <stdio.h> #include <stdlib.h> #define bool int  // Node creation struct node {   int item;   struct node *left;   struct node *right; };  // Create a new node struct node *newNode(int item) {   struct node *node = (struct node *)malloc(sizeof(struct node));   node->item = item;   node->left = NULL;   node->right = NULL;    return (node); }  // Check for height balance bool checkHeightBalance(struct node *root, int *height) {   // Check for emptiness   int leftHeight = 0, rightHeight = 0;   int l = 0, r = 0;    if (root == NULL) {     *height = 0;     return 1;   }    l = checkHeightBalance(root->left, &leftHeight);   r = checkHeightBalance(root->right, &rightHeight);    *height = (leftHeight > rightHeight ? leftHeight : rightHeight) + 1;    if ((leftHeight - rightHeight >= 2) || (rightHeight - leftHeight >= 2))     return 0;    else     return l && r; }  int main() {   int height = 0;    struct node *root = newNode(1);   root->left = newNode(2);   root->right = newNode(3);   root->left->left = newNode(4);   root->left->right = newNode(5);    if (checkHeightBalance(root, &height))     printf("The tree is balanced");   else     printf("The tree is not balanced"); }              
                // Checking if a binary tree is height balanced in C++  #include                                      using namespace std;  #define bool int  class node {    public:   int item;   node *left;   node *right; };  // Create anew node node *newNode(int item) {   node *Node = new node();   Node->item = item;   Node->left = NULL;   Node->right = NULL;    return (Node); }  // Check height balance bool checkHeightBalance(node *root, int *height) {   // Check for emptiness   int leftHeight = 0, rightHeight = 0;    int l = 0, r = 0;    if (root == NULL) {     *height = 0;     return 1;   }    l = checkHeightBalance(root->left, &leftHeight);   r = checkHeightBalance(root->right, &rightHeight);    *height = (leftHeight > rightHeight ? leftHeight : rightHeight) + 1;    if (std::abs(leftHeight - rightHeight >= 2))     return 0;    else     return l && r; }  int main() {   int height = 0;    node *root = newNode(1);   root->left = newNode(2);   root->right = newNode(3);   root->left->left = newNode(4);   root->left->right = newNode(5);    if (checkHeightBalance(root, &height))     cout << "The tree is balanced";   else     cout << "The tree is not balanced"; }                              

Balanced Binary Tree Applications

  • AVL tree
  • Balanced Binary Search Tree

williamsrectelon75.blogspot.com

Source: https://www.programiz.com/dsa/balanced-binary-tree

0 Response to "drawing a balanced binary tree"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel